Appendix II. Computer program mathematical calculations

Where hull is rounded and not multi-chined, greatest accuracy is obtained using as many sets of x,y coordinates as possible (up to 9 sets allowed)

TOTAL DISPLACEMENT

MC2

(DISP)

$$D = \sum_{i=2}^{n} (SA_i + SA_{i-1})(d_i - d_{i-1}) + SA_1 \cdot d_1 + SA_n \cdot d_{n+1}$$

where SA =1/2 area of cross-section

n = number of cross-section stations, $d_{n+1} = \text{total boat length (LOA)}$

and d =station distance from bow

Note: Areas of bow and stern cross-sections are assumed to be zero

$$MC3$$
 — — $\frac{1}{2}$ CIRCUMFERENCE OF X-SECTION (CIRC)

$$C = X_m + \sum_{i=2}^m \sqrt{(y_i - y_{i-1})_i^2 + (x_i - x_{i-1})^2}$$

where m = number of sets of x,y coordinates on cross-section

$$\left\langle \text{MC4} \right\rangle - - -$$
 TOTAL SURFACE AREA (TSURA)

TSURA =
$$C_1 \cdot d_1 + \sum_{i=1}^{n} (C_i + C_{i+1})(d_{i+1} - d_i)$$

where C = 1/2 circumference of cross-section,

d = station distance from bow

and n = number of stations

$$\left(MC5 \right) - -$$
 Total boat moment (QM)

$$QM = \frac{S_1 \cdot W \cdot d_1}{2 \cdot T} + \sum_{i=2}^{n+1} \frac{S_i \cdot W}{T} \left(\frac{d_i + d_{i-1}}{2} \right)$$

where S = surface area between two stations,

W = total weight of boat,

d = station distance from bow,

T = total boat surface area,

and n = number of stations

$$MC6$$
 — - FUNCTION (FUNC)

$$F = (-TAN \vartheta \cdot d_i) + y_i - C$$
 for $i = 1, n$

where θ = angle between datum line and waterline,

d = station distance,

c = constant,

and n = number of stations

This locates first closest hull station within + 3 cm of longitudinal datum line.

This function is derived from the following:

a line AB on the x-axis is defined by:

1.)
$$gx + y = 0$$
 where $g=0$

Line DE, parallel to AB is defined by:

2.) gx + y = C where C is a constant

Similarly, a line AB passing through the x,y axes may be defined trigonometrically by:

3.) $g \cos \theta + \sin \theta = 0$ $x = \frac{B}{(0,0)} (\cos \theta, \sin \theta)$ $y = \sin \theta$ $x = \cos \theta$

$$g = \frac{-\sin \theta}{\cos \theta} = -\tan \theta$$

substituting - $\tan \theta$ for g in 3.) above,

- $\tan \theta \cos \theta + \sin \theta = 0$

since $x = \cos \theta$ and $y = \sin \theta$,

 $- \tan \theta x + y = 0$

For DE parallel to AB,

- $\tan \theta x + y = C$ and our function F therefore is:

$$F = - \tan \theta x + y - C$$

FROM - TAN
$$\mathscr{D} \cdot x + y = C$$

 $y = C + TAN \mathscr{D} \cdot x$ for each station

$$MC8$$
 — — WETTED SURFACE AREA (IN SQUARE METERS)

$$WSA = \frac{TWSURA}{1000}$$
 where TWSURA = total waterline surface in centimeters squared

$$MC9$$
 VERTICAL CENTER OF GRAVITY (VCG)

$$\begin{aligned} \text{VCG} = & \left[\text{WMDIP}_{1} \left(\frac{\frac{y_{1,1}^{+}y_{1,NP_{1}}}{2} + \frac{YB}{2}}{2} \right) + \text{WMDIP}_{n+1} \left(\frac{\frac{y_{n,1}^{+}y_{n,NP_{n}}}{2} + \frac{YS}{2}}{2} \right) \right. \\ & + \left. \sum_{i=2}^{n} \text{WMDIP}_{i} \left(\frac{\frac{y_{i,1}^{+}y_{i,NP_{i}}}{2} + \frac{y_{i-1,1}^{+}y_{i-1,NP_{i}}}{2}}{2} \right) \right] \div \text{TKW} \end{aligned}$$

where i = station number,

n = number of stations,

TKW = total boat weight,

NP = number of x,y coordinates for station i,

YB = y coordinate at bow,

YS = y coordinate at stern,

n+1 = total boat length

and
$$WMDIP_{i} = \frac{S}{TSURA}$$
 . QW

where S = sum of the 1/2 station circumferences times the difference of the station distances from the bow,

TSURA = total boat surface area

and QW = total unloaded boat weight

MC10 - LONGITUDINAL CENTER OF GRAVITY (LCG)

LCG = TOTAL KAYAK MOMENT

 \langle MC11 \rangle - - Longitudinal center of buoyancy (LCB)

$$LCB = \frac{\sum_{i=1}^{m} (SMD_i)(SV_i)}{TWD}$$

where SMD = waterline section midpoint distance from bow,

SV = waterline section volume in cm³,

TWD = total waterline volume in cm^3 ,

and m = number of waterline stations

MC12 \rightarrow - Vertical center of buoyancy (VCB)

$$VCB = \sum_{i=1}^{m} \frac{(SMY_i)(SV_i)}{TWD}$$

where SMY = waterline section y miapoint from hull,

SV = waterline section volume in cm^3 ,

TWD = total waterline volume in cm^3

and m = number of waterline sections

 $\langle MC13 \rangle - - - HULL SPEED IN KNOTS$

SPEED =
$$1.25\sqrt{\frac{\text{WLL}}{30.48}}$$

where WLL = waterline length in cm

$$MC14$$
 -- SPEED/LENGTH RATIO AT 5 KNOTS (SLR)

SLR =
$$\sqrt{\frac{5}{30.48}}$$
 where WLL = waterline length in cm

$$\langle MC15 \rangle - - -$$
 FRICTIONAL RESISTANCE AT 5 KNOTS (FR)

where SPEED is in knots,

WSA = wetted surface area in square feet

and C is a constant that = :

.012 for craft with WLL < 12'

.011 for craft with WLL ≥ 12' and < 24'

.010 for craft with WLL 2 24'

$$MC16$$
 — — MAXIMUM SECTION COEFFICIENT (C_{m})

where WXSA = waterline area in cm² at center of gravity cross-section,

Xw = waterline beam in cm at center of gravity cross-section,

and Yw = hull to waterline distance in cm at center of gravity cross-section

$$\langle MC17 \rangle - - BLOCK COEFFICIENT (Cb)$$

where WDIS = displacement in ml,

WLL = waterline length in cm,

Xw = waterline beam in cm at center of gravity cross-section,

and Yw = hull to waterline distance in cm at center of gravity cross-section

$$\left\langle \text{MC18} \right\rangle - -$$
 PRISMATIC COEFFICIENT (C.P.)

The prismatic coefficient is the ratio of the immersed volume of a vessel to the product of its waterline length and immersed area of maximum section.

$$C.P = \frac{TWD}{WSA\left(\frac{WLL}{1000}\right)}$$

where TWD = total waterline displacement in liters, WSA = waterline section area in cm², and WWLL = waterline length in cm

Good sailboats vary between CP's of .55 and .49. The higher the value, the more tub-like the hull; conversely, the lower the value, the finer the ends.

$$MC19$$
 —— DISPLACEMENT/LENGTH RATIO (DLR)

$$DLR = \frac{BW}{(.01 WLL)^3}$$

where BW = boat displacement in long tons (2240 lbs.), and WLL = waterline length in feet